RRAM characteristics using a new Cr/GdOx/TiN structure
نویسندگان
چکیده
Resistive random access memory (RRAM) characteristics using a new Cr/GdOx/TiN structure with different device sizes ranging from 0.4 × 0.4 to 8 × 8 μm(2) have been reported in this study. Polycrystalline GdOx film with a thickness of 17 nm and a small via-hole size of 0.4 μm are observed by a transmission electron microscope (TEM) image. All elements and GdOx film are confirmed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. Repeatable resistive switching characteristics at a current compliance (CC) of 300 μA and low operating voltage of ±4 V are observed. The switching mechanism is based on the oxygen vacancy filament formation/rupture through GdOx grain boundaries under external bias. After measuring 50 RRAM devices randomly, the 8-μm devices exhibit superior resistive switching characteristics than those of the 0.4-μm devices owing to higher recombination rate of oxygen with remaining conducting filament in the GdOx film as well as larger interface area, even with a thinner GdOx film of 9 nm. The GdOx film thickness dependence RRAM characteristics have been discussed also. Memory device shows repeatable 100 switching cycles, good device-to-device uniformity with a switching yield of approximately 80%, long read endurance of >10(5) cycles, and good data retention of >3 × 10(4) s at a CC of 300 μA.
منابع مشابه
Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition
The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit ...
متن کاملHfO2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications
In this letter, HfO2 based RRAM with varying device sizes are discussed with an analysis on their electrical characteristics. Device sizes of 60nm and 120nm were achieved by using different thickness of nitride spacer after 200nm contact hole is formed. Platinum (Pt) bottom electrode and Titanium Nitride (TiN) top electrode were used with HfO2 dielectric as the resistance switching layer. Unifo...
متن کاملSwitching Behaviors of TiN/HfOx/Pt Based RRAM
Resistive Random Access Memory (RRAM) had received great amount of attention from various research efforts in recent years, owing to its promising performance as a next generation memory device. In this paper, samples based on TiN/HfOx/Pt stack were prepared and its electrical switching behaviors were characterized and discussed in brief. Keywords—HfOx, resistive switching, RRAM.
متن کاملSelf-compliance RRAM characteristics using a novel W/TaO x /TiN structure
Self-compliance resistive random access memory (RRAM) characteristics using a W/TaO x /TiN structure are reported for the first time. A high-resolution transmission electron microscope (HRTEM) image shows an amorphous TaO x layer with a thickness of 7 nm. A thin layer of TiO x N y with a thickness of 3 nm is formed at the TaO x /TiN interface, owing to the oxygen accumulation nature of Ti. This...
متن کاملImprovement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment
Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014